
First News App Documentation
Release

Investigative Reporters and Editors

March 26, 2014

Contents

i

ii

First News App Documentation, Release

A step-by-step guide to publishing a simple news application.

This tutorial will walk you through the process of building an interactive data visualization from a structured dataset.
You will get hands-on experience in every stage of the development process, writing Python, HTML and JavaScript
and recording it in Git’s version control system. By the end you will have published your work on the World Wide
Web.

This guide was prepared for training sessions of Investigative Reporters and Editors (IRE) and the National Institute
for Computer-Assisted Reporting (NICAR) by Ben Welsh. It debuted on February 27, 2014, at the Computer-Assisted
Reporting Conference in Baltimore, MD.

• Code repository: https://github.com/ireapps/first-news-app

• Demonstration: http://ireapps.github.io/first-news-app/build/index.html

• Documentation: http://first-news-app.rtfd.org/

• Issues: https://github.com/ireapps/first-news-app/issues

Contents 1

http://www.ire.org/
http://data.nicar.org/
http://data.nicar.org/
http://palewi.re/who-is-ben-welsh/
https://ire.org/events-and-training/event/973/1026/
https://ire.org/events-and-training/event/973/1026/
https://github.com/ireapps/first-news-app
http://ireapps.github.io/first-news-app/build/index.html
http://first-news-app.rtfd.org/
https://github.com/ireapps/first-news-app/issues

First News App Documentation, Release

2 Contents

CHAPTER 1

What you will make

This tutorial will guide you through the process of publishing an interactive database and map about the more than 60
people who died during the riots that swept Los Angeles for five days in 1992. You will repurpose the data from a Los
Angeles Times application that accompanied a story released on the 20th anniversary of the riots.

A working example can be found at http://ireapps.github.io/first-news-app/build/index.html

3

http://spreadsheets.latimes.com/la-riots-deaths/
http://spreadsheets.latimes.com/la-riots-deaths/
http://ireapps.github.io/first-news-app/build/index.html

First News App Documentation, Release

4 Chapter 1. What you will make

CHAPTER 2

Prelude: Prerequisites

Before you can begin, your computer needs the following tools installed and working to participate.

1. A command-line interface to interact with your computer

2. A text editor to work with plain text files

3. Git version control software and an account at GitHub.com

4. Version 2.7 of the Python programming language

5. The pip package manager and virtualenv environment manager for Python

Note: Depending on your experience and operating system, you might already be ready to go with everything above.
If so, move on to the next chapter. If not, don’t worry. And don’t give up! It will be a bit of a slog but the instructions
below will point you in the right direction.

2.1 Command-line interface

Unless something is wrong with your computer, there should be a way to open a window that lets you type in com-
mands. Different operating systems give this tool slightly different names, but they all have some form of it, and there
are alternative programs you can install as well.

On Windows you can find the command-line interface by opening the “command prompt.” Here are instructions for
Windows 8 and earlier versions. On Apple computers, you open the “Terminal” application. Ubuntu Linux comes
with a program of the same name.

2.2 Text editor

A program like Microsoft Word, which can do all sorts of text formatting like change the size and color of words, is
not what you need. Do not try to use it below.

You need a program that works with simple “plain text” files, and is therefore capable of editing documents containing
Python code, HTML markup and other languages without dressing them up by adding anything extra. Such programs
are easy to find and some of the best ones are free, including those below.

For Windows, I recommend installing Notepad++. For Apple computers, try TextWrangler. In Ubuntu Linux you can
stick with the pre-installed gedit text editor.

5

https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Text_editor
http://git-scm.com/
http://www.github.com
http://python.org/download/releases/2.7.6/
http://www.pip-installer.org/en/latest/installing.html
http://www.virtualenv.org/en/latest/
http://windows.microsoft.com/en-us/windows/command-prompt-faq#1TC=windows-8
http://windows.microsoft.com/en-us/windows-vista/open-a-command-prompt-window
http://blog.teamtreehouse.com/introduction-to-the-mac-os-x-command-line
http://askubuntu.com/questions/38162/what-is-a-terminal-and-how-do-i-open-and-use-it
https://en.wikipedia.org/wiki/Text_file
http://notepad-plus-plus.org/
http://www.barebones.com/products/textwrangler/download.html
https://help.ubuntu.com/community/gedit

First News App Documentation, Release

2.3 Git and GitHub

Git is a version control program for saving the changes you make to files over time. This is useful when you’re working
on your own, but quickly becomes essential with large software projects, especially if you work with other developers.

GitHub is a website that hosts git code repositories, both public and private. It comes with many helpful tools for
reviewing code and managing projects. It also has some extra tricks that make it easy to publish web pages, which we
will use later.

GitHub offers helpful guides for installing Git in Windows, Macs and Linux. You can verify it’s installed from your
command line like so:

You don’t have to type the "$" It’s just a generic symbol
geeks use to show they’re working on the command line.
$ git --version

Once that’s done, you should create an account at GitHub, if you don’t already have one. It shouldn’t cost you
anything. The free plan is all that’s required to complete this lesson.

2.4 Python

If you are using Mac OSX or a common flavor of Linux, Python is probably already installed and you can test to see
what version, if any, is there waiting for you by typing the following into your terminal.

$ python -V

If you don’t have Python installed (a more likely fate for Windows users) try downloading and installing it from here.
In Windows, it’s also crucial to make sure that the Python program is available on your system’s PATH so it can be
called from anywhere on the command line. This screencast can guide you through that process.

Python 2.7 is preferred but you can probably find a way to make most of this tutorial work with other versions if you
futz a little.

2.5 pip and virtualenv

The pip package manager makes it easy to install open-source libraries that expand what you’re able to do with Python.
Later, we will use it to install everything needed to create a working web application.

If you don’t have it already, you can get pip by following these instructions. In Windows, it’s necessary to make sure
that the Python Scripts directory is available on your system’s PATH so it can be called from anywhere on the
command line. This screencast can help.

Verify pip is installed with the following.

$ pip -V

The virtualenv environment manager makes it possible to create an isolated corner of your computer where all the
different tools you use to build an application are sealed off.

It might not be obvious why you need this, but it quickly becomes important when you need to juggle different tools
for different projects on one computer. By developing your applications inside separate virtualenv environments, you
can use different versions of the same third-party Python libraries without a conflict. You can also more easily recreate
your project on another machine, handy when you want to copy your code to a server that publishes pages on the
Internet.

6 Chapter 2. Prelude: Prerequisites

http://git-scm.com/
https://github.com/
http://pages.github.com/
https://help.github.com/articles/set-up-git#platform-windows
https://help.github.com/articles/set-up-git#platform-mac
https://help.github.com/articles/set-up-git#platform-linux
https://github.com/pricing
http://www.python.org/download/releases/2.7.6/
http://showmedo.com/videotutorials/video?name=960000&fromSeriesID=96
http://www.pip-installer.org/en/latest/index.html
http://www.pip-installer.org/en/latest/installing.html
http://showmedo.com/videotutorials/video?name=960000&fromSeriesID=96
http://www.virtualenv.org/en/latest/

First News App Documentation, Release

You can check if virtualenv is installed with the following.

$ virtualenv --version

If you don’t have it, install it with pip.

$ pip install virtualenv
If you’re on a Mac or Linux and get an error saying you lack the right permissions, try it again as a superuser.
$ sudo pip install virtualenv

If that doesn’t work, try following this advice.

2.5. pip and virtualenv 7

http://www.virtualenv.org/en/latest/virtualenv.html#installation

First News App Documentation, Release

8 Chapter 2. Prelude: Prerequisites

CHAPTER 3

Act 1: Hello Git

Start by creating a new development environment with virtualenv. Name it after our application.

You don’t have to type the "$" It’s just a generic symbol
geeks use to show they’re working on the command line.
$ virtualenv first-news-app

Jump into the directory it created.

$ cd first-news-app

Turn on the new virtualenv, which will instruct your terminal to only use those libraries installed inside its sealed
space. You only need to create the virtualenv once, but you’ll need to repeat these “activation” steps each time you
return to working on this project.

In Linux or Mac OSX try this...
$. bin/activate
In Windows it might take something more like...
$ cd Scripts
$ activate
$ cd ..

Create a new Git repository.

$ git init repo

Jump into the repository.

$ cd repo

Visit GitHub and create a new public repository named first-news-app. Don’t check “Initialize with README.”
You want to start with a blank repository.

Then connect your local directory to it with the following.

$ git remote add origin https://github.com/<yourusername>/first-news-app.git

Create your first file, a blank README with a Markdown file extension since that’s the preferred format of GitHub.

Macs or Linux:
$ touch README.md
In Windows fire it up in your text editor right away:
$ start notepad++ README.md

Open up the README in your text editor and type something in it. Maybe something like:

9

http://www.github.com
https://en.wikipedia.org/wiki/Markdown
https://help.github.com/articles/github-flavored-markdown

First News App Documentation, Release

My first news app
=================

Make sure to save it. Then officially add the file to your repository for tracking with Git’s add command.

$ git add README.md

Log its creation with Git’s commit command. You can include a personalized message after the -m flag.

$ git commit -m "First commit"

If this is your first time using Git, you may be prompted to configure you name and email. If so, take the time now.
Then run the commit command above again.

$ git config --global user.email "your@email.com"
$ git config --global user.name "your name"

Now, finally, push your commit up to GitHub.

$ git push origin master

Reload your repository on GitHub and see your handiwork.

10 Chapter 3. Act 1: Hello Git

CHAPTER 4

Act 2: Hello Flask

Use pip on the command line to install Flask, the Python “microframework” we’ll use to put together our website.

$ pip install Flask

Create a new file called app.py where we will configure Flask.

Again, Macs and Linux:
$ touch app.py
Windows:
$ start notepad++ app.py

Open app.py with your text editor and import the Flask basics. This is the file that will serve as your application’s
“backend,” routing data to the appropriate pages.

from flask import Flask
app = Flask(__name__) # Note the double underscores on each side! You’ll see them again.

Now configure Flask to make a page at your site’s root URL, where we will publish the complete list of people who
died during the riots using a template called index.html.

from flask import Flask
from flask import render_template
app = Flask(__name__)

@app.route("/")
def index():

return render_template(’index.html’)

Return to your command-line interface and create a directory to store your templates in the default location Flask
expects.

$ mkdir templates

Next create the index.html file we referenced in app.py. This is the HTML file where your will lay out your
webpage.

Macs and Linux:
$ touch templates/index.html
Windows:
$ start notepad++ templates/index.html

Open it up in your text editor and write something clever.

11

http://flask.pocoo.org/
http://flask.pocoo.org/docs/quickstart/#rendering-templates
http://flask.pocoo.org/docs/quickstart/#rendering-templates

First News App Documentation, Release

Hello World!

Return to app.py and configure Flask to boot up a test server when you run it.

from flask import Flask
from flask import render_template
app = Flask(__name__)

@app.route("/")
def index():

return render_template(’index.html’)

if __name__ == ’__main__’:
app.run(

host="0.0.0.0",
port=8000,
use_reloader=True,
debug=True,

)

Don’t forget to save your changes. Then run app.py on the command-line and open up your browser to
http://localhost:8000 or http://127.0.0.1:8000.

$ python app.py

Now return to the command line and commit your work to your Git repository. (To get the terminal back up, you will
either need to quit out of app.py by hitting CTRL-C, or open a second terminal and do additional work there. If
you elect to open a second terminal, which is recommended, make sure to check into the virtualenv by repeating the .
bin/activate part of Act 1: Hello Git. If you choose to quit out of app.py, you will need to turn it back on later
by calling python app.py where appropriate.)

$ git add .
$ git commit -m "Flask app.py and first template"

Push it up to GitHub and check out the changes there.

$ git push origin master

12 Chapter 4. Act 2: Hello Flask

CHAPTER 5

Act 3: Hello HTML

Start over in your templates/index.html file with a bare-bones HTML document.

<!doctype html>
<html lang="en">

<head></head>
<body>

<h1>Deaths during the L.A. riots</h1>
</body>

</html>

Commit the changes to your repository, if only for practice.

$ git add templates/index.html
$ git commit -m "Real HTML"
$ git push origin master

Make a directory to store data files.

$ mkdir static

Download the comma-delimited file that will be the backbone of our application and save it there as
la-riots-deaths.csv. Add it to your git repository.

$ git add static
$ git commit -m "Added CSV source data"
$ git push origin master

Open up app.py in your text editor and use Python’s csv module to access the CSV data.

import csv
from flask import Flask
from flask import render_template
app = Flask(__name__)

csv_path = ’./static/la-riots-deaths.csv’
csv_obj = csv.DictReader(open(csv_path, ’r’))
csv_list = list(csv_obj)

@app.route("/")
def index():

return render_template(’index.html’)

if __name__ == ’__main__’:
app.run(

13

https://raw.github.com/ireapps/first-news-app/master/static/la-riots-deaths.csv

First News App Documentation, Release

host="0.0.0.0",
port=8000,
use_reloader=True,
debug=True,

)

Next pass the list to your template, index.html, so you can use it there.

import csv
from flask import Flask
from flask import render_template
app = Flask(__name__)

csv_path = ’./static/la-riots-deaths.csv’
csv_obj = csv.DictReader(open(csv_path, ’r’))
csv_list = list(csv_obj)

@app.route("/")
def index():

return render_template(’index.html’,
object_list=csv_list,

)

if __name__ == ’__main__’:
app.run(

host="0.0.0.0",
port=8000,
use_reloader=True,
debug=True,

)

Make sure to save app.py. Then dump the data out in index.html. This is an example of Flask’s templating
language Jinja

<!doctype html>
<html lang="en">

<head></head>
<body>

<h1>Deaths during the L.A. riots</h1>
{{ object_list }}

</body>
</html>

If it isn’t already running, return the command line, restart your test server and visit http://localhost:8000
again.

Now we’ll use Jinja to sculpt the data in index.html to create an HTML table that lists all the names.

<!doctype html>
<html lang="en">

<head></head>
<body>

<h1>Deaths during the L.A. riots</h1>
<table border=1 cellpadding=7>

<tr>
<th>Name</th>

</tr>
{% for obj in object_list %}

<tr>

14 Chapter 5. Act 3: Hello HTML

http://jinja.pocoo.org/
http://www.w3schools.com/html/html_tables.asp

First News App Documentation, Release

<td>{{ obj.full_name }}</td>
</tr>

{% endfor %}
</table>

</body>
</html>

Pause to reload your browser page. Next expand the table to include a lot more data.

<!doctype html>
<html lang="en">

<head></head>
<body>

<h1>Deaths during the L.A. riots</h1>
<table border=1 cellpadding=7>

<tr>
<th>Name</th>
<th>Date</th>
<th>Type</th>
<th>Address</th>
<th>Age</th>
<th>Gender</th>
<th>Race</th>

</tr>
{% for obj in object_list %}

<tr>
<td>{{ obj.full_name }}</td>
<td>{{ obj.date }}</td>
<td>{{ obj.type }}</td>
<td>{{ obj.address }}</td>
<td>{{ obj.age }}</td>
<td>{{ obj.gender }}</td>
<td>{{ obj.race }}</td>

</tr>
{% endfor %}
</table>

</body>
</html>

Reload your page in the browser again to see the change. Then commit your work.

$ git add . # Using "." is a trick that will quickly stage *all* files you’ve changed.
$ git commit -m "Created basic table"
$ git push origin master

Next we’re going to create a unique “detail” page dedicated to each person. Start by returning to app.py in your text
editor and adding the URL that will help make this happen.

import csv
from flask import Flask
from flask import render_template
app = Flask(__name__)

csv_path = ’./static/la-riots-deaths.csv’
csv_obj = csv.DictReader(open(csv_path, ’r’))
csv_list = list(csv_obj)

@app.route("/")
def index():

15

First News App Documentation, Release

return render_template(’index.html’,
object_list=csv_list,

)

@app.route(’/<number>/’)
def detail(number):

return render_template(’detail.html’)

if __name__ == ’__main__’:
app.run(

host="0.0.0.0",
port=8000,
use_reloader=True,
debug=True,

)

Create a new file in your templates directory called detail.html for it to connect with.

Macs and Linux:
$ touch templates/detail.html
Windows:
$ start notepad++ templates/detail.html

Put something simple in it with your text editor.

Hello World!

Then, if it’s not running, restart your test server and use your browser to visit http://localhost:8000/1/,
http://localhost:8000/200/ or any other number.

$ python app.py

To customize the page for each person, we will need to connect the number in the URL with the id column in the
CSV data file. First, return to app.py in the text editor and use Python to transform the data list we currently have
there into a dictionary with each record’s id as the key.

import csv
from flask import Flask
from flask import render_template
app = Flask(__name__)

csv_path = ’./static/la-riots-deaths.csv’
csv_obj = csv.DictReader(open(csv_path, ’r’))
csv_list = list(csv_obj)
csv_dict = dict([[o[’id’], o] for o in csv_list])

@app.route("/")
def index():

return render_template(’index.html’,
object_list=csv_list,

)

@app.route(’/<number>/’)
def detail(number):

return render_template(’detail.html’)

if __name__ == ’__main__’:
app.run(

host="0.0.0.0",

16 Chapter 5. Act 3: Hello HTML

First News App Documentation, Release

port=8000,
use_reloader=True,
debug=True,

)

Then have the detail function connect the number from the URL with the corresponding record in the dictionary
and pass it through the template.

import csv
from flask import Flask
from flask import render_template
app = Flask(__name__)

csv_path = ’./static/la-riots-deaths.csv’
csv_obj = csv.DictReader(open(csv_path, ’r’))
csv_list = list(csv_obj)
csv_dict = dict([[o[’id’], o] for o in csv_list])

@app.route("/")
def index():

return render_template(’index.html’,
object_list=csv_list,

)

@app.route(’/<number>/’)
def detail(number):

return render_template(’detail.html’,
object=csv_dict[number],

)

if __name__ == ’__main__’:
app.run(

host="0.0.0.0",
port=8000,
use_reloader=True,
debug=True,

)

Now clear detail.html and make a new HTML document with a headline drawn from the data we’ve passed in
from the dictionary.

<!doctype html>
<html lang="en">

<head></head>
<body>

<h1>{{ object.full_name }}</h1>
</body>

</html>

Restart your test server and take a look at http://localhost:8000/1/ again.

$ python app.py

Return to index.html and add a hyperlink to each detail page to the table.

<!doctype html>
<html lang="en">

<head></head>
<body>

17

First News App Documentation, Release

<h1>Deaths during the L.A. riots</h1>
<table border=1 cellpadding=7>

<tr>
<th>Name</th>
<th>Date</th>
<th>Type</th>
<th>Address</th>
<th>Age</th>
<th>Gender</th>
<th>Race</th>

</tr>
{% for obj in object_list %}

<tr>
<td>{{ obj.full_name }}</td>
<td>{{ obj.date }}</td>
<td>{{ obj.type }}</td>
<td>{{ obj.address }}</td>
<td>{{ obj.age }}</td>
<td>{{ obj.gender }}</td>
<td>{{ obj.race }}</td>

</tr>
{% endfor %}
</table>

</body>
</html>

Restart your test server and take a look at http://localhost:8000/.

$ python app.py

In detail.html you can use the rest of the data fields to write a sentence about the victim and print out the summary
that’s been written in the data file.

<!doctype html>
<html lang="en">

<head></head>
<body>

<h1>
{{ object.full_name }}, a {{ object.age }} year old,
{{ object.race }} {{ object.gender|lower }} died on {{ object.date }}
in a {{ object.type|lower }} at {{ object.address }} in {{ object.neighborhood }}.

</h1>
<p>{{ object.story }}</p>

</body>
</html>

Reload http://localhost:8000/1/ to see it. Then once again commit your work.

$ git add .
$ git commit -m "Created a detail page about each victim."
$ git push origin master

18 Chapter 5. Act 3: Hello HTML

CHAPTER 6

Act 4: Hello JavaScript

Next we will work to make a map with every victim in index.html using the Leaflet JavaScript library. Start by
importing it in your page.

<!doctype html>
<html lang="en">

<head>
<link rel="stylesheet" href="http://cdn.leafletjs.com/leaflet-0.7.2/leaflet.css" />
<script type="text/javascript" src="http://cdn.leafletjs.com/leaflet-0.7.2/leaflet.js?2"></script>

</head>
<body>

<h1>Deaths during the L.A. riots</h1>
<table border=1 cellpadding=7>

<tr>
<th>Name</th>
<th>Date</th>
<th>Type</th>
<th>Address</th>
<th>Age</th>
<th>Gender</th>
<th>Race</th>

</tr>
{% for obj in object_list %}

<tr>
<td>{{ obj.full_name }}</td>
<td>{{ obj.date }}</td>
<td>{{ obj.type }}</td>
<td>{{ obj.address }}</td>
<td>{{ obj.age }}</td>
<td>{{ obj.gender }}</td>
<td>{{ obj.race }}</td>

</tr>
{% endfor %}
</table>

</body>
</html>

Create an HTML element to hold the map and use Leaflet to boot it up and center on Los Angeles.

<!doctype html>
<html lang="en">

<head>
<link rel="stylesheet" href="http://cdn.leafletjs.com/leaflet-0.7.2/leaflet.css" />
<script type="text/javascript" src="http://cdn.leafletjs.com/leaflet-0.7.2/leaflet.js?2"></script>

19

http://leafletjs.com/

First News App Documentation, Release

</head>
<body>

<div id="map" style="width:100%; height:300px;"></div>
<h1>Deaths during the L.A. riots</h1>
<table border=1 cellpadding=7>

<tr>
<th>Name</th>
<th>Date</th>
<th>Type</th>
<th>Address</th>
<th>Age</th>
<th>Gender</th>
<th>Race</th>

</tr>
{% for obj in object_list %}

<tr>
<td>{{ obj.full_name }}</td>
<td>{{ obj.date }}</td>
<td>{{ obj.type }}</td>
<td>{{ obj.address }}</td>
<td>{{ obj.age }}</td>
<td>{{ obj.gender }}</td>
<td>{{ obj.race }}</td>

</tr>
{% endfor %}
</table>
<script type="text/javascript">

var map = L.map(’map’).setView([34.055, -118.35], 9);
var mapquestLayer = new L.TileLayer(’http://{s}.mqcdn.com/tiles/1.0.0/map/{z}/{x}/{y}.png’, {

maxZoom: 18,
attribution: ’Data, imagery and map information provided by MapQuest,OpenStreetMap and contributors.’,
subdomains: [’otile1’,’otile2’,’otile3’,’otile4’]

});
map.addLayer(mapquestLayer);

</script>
</body>

</html>

Loop through the CSV data and format it as a GeoJSON object, which Leaflet can easily load.

<!doctype html>
<html lang="en">

<head>
<link rel="stylesheet" href="http://cdn.leafletjs.com/leaflet-0.7.2/leaflet.css" />
<script type="text/javascript" src="http://cdn.leafletjs.com/leaflet-0.7.2/leaflet.js?2"></script>

</head>
<body>

<div id="map" style="width:100%; height:300px;"></div>
<h1>Deaths during the L.A. riots</h1>
<table border=1 cellpadding=7>

<tr>
<th>Name</th>
<th>Date</th>
<th>Type</th>
<th>Address</th>
<th>Age</th>
<th>Gender</th>
<th>Race</th>

</tr>

20 Chapter 6. Act 4: Hello JavaScript

https://en.wikipedia.org/wiki/GeoJSON

First News App Documentation, Release

{% for obj in object_list %}
<tr>

<td>{{ obj.full_name }}</td>
<td>{{ obj.date }}</td>
<td>{{ obj.type }}</td>
<td>{{ obj.address }}</td>
<td>{{ obj.age }}</td>
<td>{{ obj.gender }}</td>
<td>{{ obj.race }}</td>

</tr>
{% endfor %}
</table>
<script type="text/javascript">

var map = L.map(’map’).setView([34.055, -118.35], 9);
var mapquestLayer = new L.TileLayer(’http://{s}.mqcdn.com/tiles/1.0.0/map/{z}/{x}/{y}.png’, {

maxZoom: 18,
attribution: ’Data, imagery and map information provided by MapQuest,OpenStreetMap and contributors.’,
subdomains: [’otile1’,’otile2’,’otile3’,’otile4’]

});
map.addLayer(mapquestLayer);
var data = {
"type": "FeatureCollection",
"features": [
{% for obj in object_list %}
{
"type": "Feature",
"properties": {
"full_name": "{{ obj.full_name }}",
"id": "{{ obj.id }}"

},
"geometry": {
"type": "Point",
"coordinates": [{{ obj.x }}, {{ obj.y }}]

}
}{% if not loop.last %},{% endif %}
{% endfor %}

]
};
var dataLayer = L.geoJson(data);
map.addLayer(dataLayer);

</script>
</body>

</html>

Add a popup on the map pins that shows the name of the victim.

<!doctype html>
<html lang="en">

<head>
<link rel="stylesheet" href="http://cdn.leafletjs.com/leaflet-0.7.2/leaflet.css" />
<script type="text/javascript" src="http://cdn.leafletjs.com/leaflet-0.7.2/leaflet.js?2"></script>

</head>
<body>

<div id="map" style="width:100%; height:300px;"></div>
<h1>Deaths during the L.A. riots</h1>
<table border=1 cellpadding=7>

<tr>
<th>Name</th>
<th>Date</th>

21

First News App Documentation, Release

<th>Type</th>
<th>Address</th>
<th>Age</th>
<th>Gender</th>
<th>Race</th>

</tr>
{% for obj in object_list %}

<tr>
<td>{{ obj.full_name }}</td>
<td>{{ obj.date }}</td>
<td>{{ obj.type }}</td>
<td>{{ obj.address }}</td>
<td>{{ obj.age }}</td>
<td>{{ obj.gender }}</td>
<td>{{ obj.race }}</td>

</tr>
{% endfor %}
</table>
<script type="text/javascript">

var map = L.map(’map’).setView([34.055, -118.35], 9);
var mapquestLayer = new L.TileLayer(’http://{s}.mqcdn.com/tiles/1.0.0/map/{z}/{x}/{y}.png’, {

maxZoom: 18,
attribution: ’Data, imagery and map information provided by MapQuest,OpenStreetMap and contributors.’,
subdomains: [’otile1’,’otile2’,’otile3’,’otile4’]

});
map.addLayer(mapquestLayer);
var data = {
"type": "FeatureCollection",
"features": [
{% for obj in object_list %}
{
"type": "Feature",
"properties": {
"full_name": "{{ obj.full_name }}",
"id": "{{ obj.id }}"

},
"geometry": {
"type": "Point",
"coordinates": [{{ obj.x }}, {{ obj.y }}]

}
}{% if not loop.last %},{% endif %}
{% endfor %}

]
};
var dataLayer = L.geoJson(data, {

onEachFeature: function(feature, layer) {
layer.bindPopup(feature.properties.full_name);

}
});
map.addLayer(dataLayer);

</script>
</body>

</html>

Now wrap the name in a hyperlink to that person’s detail page.

<!doctype html>
<html lang="en">

<head>

22 Chapter 6. Act 4: Hello JavaScript

First News App Documentation, Release

<link rel="stylesheet" href="http://cdn.leafletjs.com/leaflet-0.7.2/leaflet.css" />
<script type="text/javascript" src="http://cdn.leafletjs.com/leaflet-0.7.2/leaflet.js?2"></script>

</head>
<body>

<div id="map" style="width:100%; height:300px;"></div>
<h1>Deaths during the L.A. riots</h1>
<table border=1 cellpadding=7>

<tr>
<th>Name</th>
<th>Date</th>
<th>Type</th>
<th>Address</th>
<th>Age</th>
<th>Gender</th>
<th>Race</th>

</tr>
{% for obj in object_list %}

<tr>
<td>{{ obj.full_name }}</td>
<td>{{ obj.date }}</td>
<td>{{ obj.type }}</td>
<td>{{ obj.address }}</td>
<td>{{ obj.age }}</td>
<td>{{ obj.gender }}</td>
<td>{{ obj.race }}</td>

</tr>
{% endfor %}
</table>
<script type="text/javascript">

var map = L.map(’map’).setView([34.055, -118.35], 9);
var mapquestLayer = new L.TileLayer(’http://{s}.mqcdn.com/tiles/1.0.0/map/{z}/{x}/{y}.png’, {

maxZoom: 18,
attribution: ’Data, imagery and map information provided by MapQuest,OpenStreetMap and contributors.’,
subdomains: [’otile1’,’otile2’,’otile3’,’otile4’]

});
map.addLayer(mapquestLayer);
var data = {
"type": "FeatureCollection",
"features": [
{% for obj in object_list %}
{
"type": "Feature",
"properties": {
"full_name": "{{ obj.full_name }}",
"id": "{{ obj.id }}"

},
"geometry": {
"type": "Point",
"coordinates": [{{ obj.x }}, {{ obj.y }}]

}
}{% if not loop.last %},{% endif %}
{% endfor %}

]
};
var dataLayer = L.geoJson(data, {

onEachFeature: function(feature, layer) {
layer.bindPopup(

’’ +

23

First News App Documentation, Release

feature.properties.full_name +
’’

);
}

});
map.addLayer(dataLayer);

</script>
</body>

</html>

Commit your map.

$ git add .
$ git commit -m "Made a map on the index page"
$ git push origin master

Open up detail.html and make a map there, focus on just that victim.

<!doctype html>
<html lang="en">

<head>
<link rel="stylesheet" href="http://cdn.leafletjs.com/leaflet-0.7.2/leaflet.css" />
<script type="text/javascript" src="http://cdn.leafletjs.com/leaflet-0.7.2/leaflet.js?2"></script>

</head>
<body>

<div id="map" style="width:100%; height:300px;"></div>
<h1>

{{ object.full_name }}, a {{ object.age }} year old,
{{ object.race }} {{ object.gender|lower }} died on {{ object.date }}
in a {{ object.type|lower }} at {{ object.address }} in {{ object.neighborhood }}.

</h1>
<p>{{ object.story }}</p>
<script type="text/javascript">

var map = L.map(’map’).setView([{{ object.y }}, {{ object.x }}], 16);
var mapquestLayer = new L.TileLayer(’http://{s}.mqcdn.com/tiles/1.0.0/map/{z}/{x}/{y}.png’, {

maxZoom: 18,
attribution: ’Data, imagery and map information provided by MapQuest,OpenStreetMap and contributors.’,
subdomains: [’otile1’,’otile2’,’otile3’,’otile4’]

});
map.addLayer(mapquestLayer);
var marker = L.marker([{{ object.y }}, {{ object.x }}]).addTo(map);

</script>
</body>

</html>

Commit that.

$ git add .
$ git commit -m "Made a map on the detail page"
$ git push origin master

24 Chapter 6. Act 4: Hello JavaScript

CHAPTER 7

Act 5: Hello Internet

In this final act, we will publish your application to the Internet using Frozen Flask, a Python library that saves every
page you’ve made with Flask as a flat file that can be uploaded to the web. This is an alternative publishing method
that does not require you configure and host an full-fledged Internet server.

First, use pip to install Frozen Flask from the command line.

$ pip install Frozen-Flask

Create a new file called freeze.py where we will configure what pages it should convert into flat files.

Mac and Linux:
$ touch freeze.py
Windows:
$ start notepad++ freeze.py

Use your text editor to write a basic Frozen Flask configuration.

from flask_frozen import Freezer
from app import app
freezer = Freezer(app)

if __name__ == ’__main__’:
freezer.freeze()

Now run it from the command line, which will create a new directory called build filled with a set of flattened files.

$ python freeze.py

Use your browser to open up one of the local files in build, rather that visit the dynamically generated pages we
created at localhost.

You will notice that the default Frozen Flask configuration only flatted out index.html, and not all your detail
pages our template could generate using the data file.

To flatten those, again edit freeze.py to give it the instructions it needs to make a page for every record in the
source CSV.

from flask_frozen import Freezer
from app import app, csv_list
freezer = Freezer(app)

@freezer.register_generator
def detail():

for row in csv_list:
yield {’number’: row[’id’]}

25

http://pythonhosted.org/Frozen-Flask/

First News App Documentation, Release

if __name__ == ’__main__’:
freezer.freeze()

Run it again from the command line and notice all the additional pages it made in the build directory. Try opening
one in your browser.

$ python freeze.py

Commit all of the flat pages to the repository.

$ git add .
$ git commit -m "Froze my app"
$ git push origin master

Finally, we will publish these static files to the web using GitHub’s Pages feature. All it requires is that we create a
new branch in our repository called gh-pages and push our files up to GitHub there. Keep in mind there are many
other options for publishing flat files, ranging from Dropbox to Amazon’s S3 service.

$ git checkout -b gh-pages # Create the new branch
$ git merge master # Pull in all the code from the master branch
$ git push origin gh-pages # Push up to GitHub from your new branch

Now wait a minute or two, then visit http://<yourusername>.github.io/first-news-app/build/index.html
to cross the finish line.

26 Chapter 7. Act 5: Hello Internet

http://pages.github.com/
https://en.wikipedia.org/wiki/Dropbox_%28service%29
https://en.wikipedia.org/wiki/Amazon_S3

